SimpleMedics

Медицина и наука

website template image

Разделы

Как улучшить свою двигательную память - Есть вид памяти, который мы редко замечаем: это двигательная память. Без нее невозможно, например, научиться водить машину, она во многом определяет координацию, ловкость и меткость наших движений.  Читайте...

Поглощение энергии ЭМП в тканях и преобразование ее в тепловую

Механизм преобразования в живых тканях энергии ЭМП в тепловую считали единственно возможной причиной любых биоло­гических эффектов, вызываемых ЭМП от низких частот до сверхвысоких. На этой основе были разработаны и получили широкое распространение методы применения ЭМП высоких, ультравысоких и сверхвысоких частот для лечения различных заболеваний. Исходя из этой концепции, пытались оценивать предельно допустимые интенсивности ЭМП ра­диочастот при изучении их профессиональной вредности.

Тепловая концепция биологи­ческих эффектов ЭМП противоречит результатам ряда исследований, проведенных с ЭМП слабых интенсивностей. Однако в тех случаях, когда биологические объекты подвергаются воздей­ствию ЭМП достаточно высоких интенсивностей (при которых тепловой эффект уже возможен), она представляется полезной. Поэтому мы подробно рассмот­рим теоретические и экспери­ментальные данные о тепловых эффектах ЭМП различных ча­стот.

В низкочастотном и высокочастотном диапазонах преобразование энергии ЭМП в теп­ловую связано в основном с потерями проводимости, возникающими за счет выделения, в тканях джоулева тепла инду­цированными в них ионными токами.

До частот порядка 10 Мгц размеры тела человека и круп­ных животных (а тем более мелких) малы по сравнению с длиной волны, а ткани тела можно рассматривать как про­водящую среду. Поэтому вы­полняются условия квазиста­ционарности и расчеты можно производить как для ста­тического поля; мощность ЭМП, поглощаемая в единице объема тела, может быть в этом случае вычислена по законам постоян­ного

тока:

Р = i2ρ вт\см3

Величину плотности тока i следует вычислять применительно к форме и электрическим параметрам биологического объекта. Такой расчет для человека, находяще­гося в переменном электрическом или магнитном поле в диапа­зоне частот от 100 Кгц до 1 Мгц, сделан при следующих допуще­ниях:

1. Тело человека приближенно рассматривается как гомоген­ный (по электрическим свойствам) проводящий эллипсоид;

2. Рассматривается только однородное электрическое или магнитное поле, в котором тело (эллипсоид) расположено так, что его большая ось параллельна силовым линиям.

При этих условиях плотность тока в случае электрического поля равна

ie=1,3*10-13 *f*E а/см2,

а в случае магнитного поля

iн=1,3*10-11*f*H а/см2

(Е выражено в в/м, Н — в а/м, f —в гц).

Количество тепла, выделяемое при этом в теле человека, бу­дет определяться из соотношений:

QE=2*10-20* ρср*f2*E2 кал/мин

QH=2*10-16 ρср*f2*H2 кал/мин

(ρср - среднее удельное сопротивление тканей тела человека).

В диапазонах ультравысоких и сверхвысоких частот преоб­разование энергии ЭМП в тепловую связано уже не только с по­терями проводимости, но и с диэлектрическими потерями. При этом доля диэлектрических потерь в общем поглощении энергии ЭМП в тканях возрастает с частотой. Например, потери, связанные с релаксацией молекул воды в тканях, при частоте 1 Ггц составляют около 50% от общих потерь, при частоте 10 Ггц - около 90% и при частоте 30 Ггц—около 98%.

В этих частотных диапазонах (выше 100 Мгц) размеры те­ла человека и крупных животных уже сравнимы с λ или превы­шают ее, а ткани тела уже нельзя рассматривать как проводя­щую среду; наконец, нельзя считать различные ткани гомоген­ными по электрическим свойствам. Иначе говоря, условие квазистационарвости здесь не выполняется и необходимо рас­сматривать поток волн, часть которого отражается от поверхно­сти тела, а остальная часть постепенно поглощается в электриче­ски негомогенных тканях.

Перейти на страницу: 1 2 3 4 5 6

Узнайте больше ...

Оздоровительная и лечебная физкультура в системе реабилитации больных при гиподинамии.
Наиболее часто гиподинамия встречается у хирургических больных. Недостаточная подвижность этих людей может быть вынужденной (многочисленные тяжелые переломы, другие травмы, обширные операции и т.д.) или связанной с общей слабостью, вызванной болезнью. Она в значительной степени усиливает все послеоперационные нарушения функций органов и систем и может быть первопричиной многих ...