SimpleMedics

Медицина и наука

website template image

Разделы

Как улучшить свою двигательную память - Есть вид памяти, который мы редко замечаем: это двигательная память. Без нее невозможно, например, научиться водить машину, она во многом определяет координацию, ловкость и меткость наших движений.  Читайте...

Температурные датчики. Термисторы.

Одной из наиболее распространенных задач промышленной, бытовой и медицинской автоматики, решаемых путем температурных измерений, является задача выделения заданного значения температуры или диапазона температур, в пределах которого контролируемые физические процессы протекают нормально, с требуемыми параметрами. Это, в первую очередь, относится к приборам и устройствам, работающим при температурах, определяемых условиями жизнедеятельности человека и используемых им при этом приборов машин и механизмов, т.е. –40º +100°С, например, кондиционирование температуры жилых, складских и технологических помещений, контроль нагрева различных двигателей, трансмиссий, тормозных устройств и т.п., системы пожарной сигнализации, контроль температуры в медицине, биотехнологиях www.ektu.kz

и сельском хозяйстве и пр. В качестве чувствительных элементов таких систем в последнее время широко используются полупроводниковые термосопротивления с отрицательным температурным коэффициентом или термисторы (NTC-thermistors). Однако, для решения задачи в целом, т.е. получения электрического сигнала, возникающего при повышении или понижении температуры контролируемого процесса до заданного значения, термистор должен быть снабжен дополнительными электронными схемами, которые и осуществляют решение задачи выделения заданного значения температуры. В Институте проблем управления РАН совместно с фирмой VZ SENSOR Ltd., на основе полупроводниковых структур с L-образной вольтамперной характеристикой были разработаны интеллектуальные (функциональные) термисторы (Z-thermistors), которые способны решать задачу выделения заданного значения температуры без использования дополнительных электронных схем .

Схема включения обычного термистора

Схема включения Z-термистора

Z-термисторы представляют собой полупроводниковую p-n структуру, включаемую в прямом направлении (+ к p-области структуры) в цепь источника постоянного напряжения. Структура обладает функцией перехода из одного устойчивого состояния (с малым током) в другое устойчивое состояние (в 50 - 100 раз большим током) при ее нагреве до заданного значения температуры. Установка требуемого значения температуры срабатывания осуществляется простым изменением напряжения питания. Длительность перехода структуры (Z-термистора) из одного устойчивого состояния в другое 1 - 2 мкс. Схема включения Z-термистора состоит из источника питания U и нагрузочного резистора R, который одновременно служит ограничителем тока Z-термистора при его переходе в состояние с большим током (рис.). Выходной сигнал (бросок напряжения) может быть снят как с нагрузочного резистора R, так и с самого Z-термистора, но с обратным знаком. Как уже было сказано, Z-термистор может быть настроен на любое значение температуры в диапазоне –40 -+100°С путем изменения питающего напряжения U. При этом могут быть изготовлены разные типы Z-термисторов, срабатывающие при одной и той же температуре от разных напряжений питания. Для того, чтобы разделить Z-термисторы по типам, было введено понятие базовой температуры. В качестве базовой было принято значение комнатной температуры (room temperature) +20°С. Принципиально Z-термисторы могут быть изготовлены на любые напряжения срабатывания в пределах от 1 до 100 В при базовой температуре, но для удобства пользователей мы ограничились рядом типовых значений напряжения, чаще всего используемых в электронной технике, а именно: 1,5 В; 3 В; 4,5 В; 9 В; 12 В; 18 В; 24 В (см. таблицу).

Таблица - Технические характеристики Z-термисторов при температуре +20°C и сопротивлении резистора R = 0.25 + 5 кОм

Тип Z-термистора

TZ-1

TZ-3

TZ-4

TZ-12

TZ-18

TZ-24

Пороговое напряжение

Uth(B)

<1,5

3+-0,5

4,5+-1

12+-2

18+-3

24+-3

Пороговый ток

Ith(mA)

<0,05

<0,1

<0,15

<0,2

<0,25

<0,35

Вторичное напряжение

Uf(B)

<0,7

<1,5

<2

<5

<8

<10

Вторичный ток

If(mA)

>1,5

>1,7

>3

>2,5

>3

>3,5

Выходной сигнал

UR(B)

>0,5 Uth

"

"

"

"

"

Рассеиваемая мощность

P(mBт)

<100

"

"

"

"

"

Длительность перехода Uth-Uf

t(мкс)

<5

"

"

"

"

"

Разрешающая способность

Т(°C)

<0,1

"

"

<<0,1

"

"

Чувствительность участка 1

S1(мВ/°C)

>10

"

"

>30

"

"

Чувствительность участка 2

S2(мВ/°C)

>20

"

"

>60

"

"

Чувствительность участка 3

S3(мВ/°C)

>200

"

"

>400

"

"

Быстродействие

Т(сек)

<1

"

"

<<1

"

"

Перейти на страницу: 1 2

Узнайте больше ...

Плюсы и минусы особых подходов к профилактике курения
Немалое число специалистов, работающих с молодежью и так или иначе занимающихся профилактикой различных видов потенциально опасного поведения, хотели бы защитить недавних детей от разнообразных опасностей. Среди этих видов поведения такие, как потребление химических веществ, изменяющих поведение молодых людей, их взгляд на себя и на окружающий мир, участие в массов ...