SimpleMedics

Медицина и наука

website template image

Разделы

Как улучшить свою двигательную память - Есть вид памяти, который мы редко замечаем: это двигательная память. Без нее невозможно, например, научиться водить машину, она во многом определяет координацию, ловкость и меткость наших движений.  Читайте...

Приведение формул обращения томографической реконструкции в конусе лучей к виду, позволяющему строить численные алгоритмы.

Если рассматривать задачи томографии, то там с функцией 1/xx2 сворачиваются исходные данные, которые регулярны и имеют финитный носитель. Можно показать также, что необходимая свертка выражается формулой:

S(r, j ) = I(r, j ) * (-1/p r2 ) =

(2.2.5)

В реальных ситуациях функция I(r, j ) известна в некотором дискретном множестве точек. Для того, чтобы использовать формулу (2.2.4) нужно построить аппроксимацию функции I(r, j ), такую что интеграл в правой части имеет смысл. Интеграл (2.2.4) заведомо сходится, если функция I(r, j ) принадлежит множеству K, то есть имеет финитный носитель и является бесконечно дифференцируемой.

Однако аппроксимация данных бесконечно дифференцируемой функцией может оказаться громоздкой при построении численных алгоритмов. Кроме того, использование бесконечно дифференцируемых функций может приводить к заглаживанию границ областей с резко отличающимися плотностями. Для сходимости интеграла в (2.2.5) достаточно, чтобы функция I(r, j ) имела в каждой точке конечные односторонние производные первого порядка по переменной r. Это позволяет, в частности, использовать кубические сплайны для построения аппроксимации функции I(r, j ).

Основными операциями с обобщенными функциями, используемыми в задачах томографии, являются свертка, дифференцирование и преобразование Фурье. Основная идея определения операций заключается в том, что некоторые свойства функционалов, задаваемых регулярными функциями, берутся за основу при определении соответствующих операций над обобщенными функциями, являющимися линейными функционалами.

На этой основе построено приведенное выше определение свертки. Особенно просто и наглядно этот прием можно продемонстрировать при определении операции дифференцирования обобщенных функций.

Пусть линейный функционал f задается регулярной функцией f(x) имеющей интегрируемую производную. Для действия производной на функцию a (x) из пространства основных можно записать равенство

, (2.2.6)

здесь использовано интегрирование по частям и то, что a (x) равна нулю вне некоторого конечного интервала.

Приведенное выше свойство берется за основу при определении производной обобщенной функции. Пусть задан функционал f, его производной называется функционал f/, определяемый равенством . Так как функции из пространства основных бесконечно дифференцируемы, то определение является корректным и обобщенные функции имеют производные любого порядка.

Перейдем к определению преобразования Фурье в смысле обобщенных функций. В приводившихся выше определениях функции, входящие в пространство основных, были действительными. При определении преобразования Фурье целесообразно в качестве основных рассмотреть комплекснозначные функции.

Пусть K пространство комплексных основных функций (бесконечно дифференцируемых с финитным носителем).

Каждой комплекснозначной локально интегрируемой функции f(x) ставится в соответствие функционал

,

комплексно сопряжена с f(x), a (x) Î K.

Множество всех линейных непрерывных функционалов на K образует комплексное пространство обобщенных функций K/. Обозначим через Z - множество функций, являющихся преобразованиями Фурье функций из K.

Преобразованием Фурье элемента f из пространства K называется функционал g на пространстве Z, действующий по формуле

(g, y ) = 2 p (f, a ), (2.2.7)

здесь j такой элемент из K, для которого преобразование Фурье есть y . То есть для того чтобы вычислить действие функционала g на функцию y (l ) из пространства Z, нужно:

найти такую функцию a (x) из пространства K, преобразованием Фурье, которой является функция y (l );

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Узнайте больше ...

Миграционная активность лейкоцитов в условиях нормы и при диффузных заболеваниях соединительной ткани
А.В.Пизов – кандидат биологических наук, ассистент кафедры методики преподавания естественно-математических дисциплин в начальной школе Ярославского государственного педагогического университета им.К.Д.Ушинского; В.Н.Левин – доктор медицинских наук, профессор, зав.кафедрой МБОС Ярославского государственного педагогического университета им.К.Д.Ушинского. В послед ...