SimpleMedics

Медицина и наука

website template image

Разделы

Как улучшить свою двигательную память - Есть вид памяти, который мы редко замечаем: это двигательная память. Без нее невозможно, например, научиться водить машину, она во многом определяет координацию, ловкость и меткость наших движений.  Читайте...

Приведение формул обращения томографической реконструкции в конусе лучей к виду, позволяющему строить численные алгоритмы.

.

Интегрируя сначала при фиксированном p по плоскости l 1x1 + l 2x2 + l 3x3 = p, а затем по p приходим к хорошо известному выражению, связывающему преобразования Фурье и Радона

. (2.3.1)

Соотношение между преобразованием Радона и преобразованием Фурье лучевых данных.

В [21] предложен способ инвертирования лучевого преобразования, основанный на том, что по исходным данным восстанавливается преобразование Радона функции f(x)

,

что позволяет по известным формулам восстановить f(x).

При выводе формул обращения в работе используется функция

. (2.3.2)

Можно показать что для функций и справедливо соотношение

, (2.3.3)

здесь С v некоторая константа. Равенства (2.3.2) и (2.3.3) дают связь между преобразованием Радона и лучевым преобразованием в трехмерном пространстве:

, (2.3.4)

Отметим также, что поскольку

, . Равенство (2.3.4) может быть записано в виде . Из последнего равенства и определения функции следует, что функция x постоянна на плоскостях, ортогональных вектору x , так как для всех x, принадлежащих такой плоскости, скалярное произведение (x, x ) равно константе. Этот факт лежит в основе многих методов обращения лучевого преобразования. Это утверждение получено в [40], для случая комплексных пространств. Для действительных пространств это утверждение содержится в работах. Оно и может быть использовано для восстановления функции в точках x, принадлежащих области D, по значениям на ее границах.

Соотношение между преобразованием Фурье лучевых данных и преобразованием Фурье искомой функции f(x).

В работе получено равенство:

, (2.3.5)

устанавливающее связь между преобразованием Фурье лучевых данных и преобразованием Фурье самой функции f, преобразование Фурье понимается в смысле обобщенных функций. Для того, чтобы использовать эту формулу для нахождения функции f нужно иметь формулы для вычисления обобщенного преобразования Фурье по лучевым данным. Такие формулы были приведены выше.

В заключение, хотелось бы сказать, что раскрытие того множества вопросов, затронутых в данной работе, можно бы было продолжать ещё очень долго, так что ряд тем представлены несколько ужато. Особый интерес представляло изучение именно технической (физической, если угодно) стороны компьютерной томографии, как метода диагностики. Замечаний к работе может, в принципе, возникнуть много, однако надеюсь на несколько снисходительное отношение – сроки были сжатые, вопрос – обширный (да и сам процесс написания прерывался - пошуровал в компьютере win95.cih).

Перейти на страницу: 4 5 6 7 8 9 

Узнайте больше ...

Гоносомные хромосомные болезни
Хромосомные болезни обусловлены изменениями количества и структуры хромосом. В соматических клетках человеческого организма имеется диплоидный набор хромосом—23 пары (46 хромосом), а в половых клетках (гаметах)—гаплоидный (одинарный) (23 хромосомы). У мужчин и женщин 22 пары диплоидного набора соматических клеток, одинаковы по форме и величине и называются а ...